翻訳と辞書
Words near each other
・ Erdős cardinal
・ Erdős conjecture on arithmetic progressions
・ Erdős distinct distances problem
・ Erdős number
・ Erdős Prize
・ Erdős space
・ Erdősmecske
・ Erdősmárok
・ Erdős–Anning theorem
・ Erdős–Bacon number
・ Erdős–Borwein constant
・ Erdős–Burr conjecture
・ Erdős–Diophantine graph
・ Erdős–Faber–Lovász conjecture
・ Erdős–Fuchs theorem
Erdős–Gallai theorem
・ Erdős–Graham problem
・ Erdős–Gyárfás conjecture
・ Erdős–Hajnal conjecture
・ Erdős–Kac theorem
・ Erdős–Ko–Rado theorem
・ Erdős–Mordell inequality
・ Erdős–Nagy theorem
・ Erdős–Nicolas number
・ Erdős–Pósa theorem
・ Erdős–Rado theorem
・ Erdős–Rényi model
・ Erdős–Stone theorem
・ Erdős–Straus conjecture
・ Erdős–Szekeres theorem


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Erdős–Gallai theorem : ウィキペディア英語版
Erdős–Gallai theorem
The Erdős–Gallai theorem is a result in graph theory, a branch of combinatorial mathematics. It provides one of two known approaches solving the graph realization problem, i.e. it gives a necessary and sufficient condition for a finite sequence of natural numbers to be the degree sequence of a simple graph. A sequence obeying these conditions is called "graphic". The theorem was published in 1960 by Paul Erdős and Tibor Gallai, after whom it is named.
==Theorem statement==
A sequence of non-negative integers d_1\geq\cdots\geq d_n can be represented as the degree sequence of a finite simple graph on ''n'' vertices if and only if d_1+\cdots+d_n is even and
:
\sum^_d_i\leq k(k-1)+ \sum^n_ \min(d_i,k)

holds for every k in 1\leq k\leq n.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Erdős–Gallai theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.